Regulation of Brown Fat Adipogenesis by Protein Tyrosine Phosphatase 1B
نویسندگان
چکیده
BACKGROUND Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of insulin signaling and energy balance, but its role in brown fat adipogenesis requires additional investigation. METHODOLOGY/PRINCIPAL FINDINGS To precisely determine the role of PTP1B in adipogenesis, we established preadipocyte cell lines from wild type and PTP1B knockout (KO) mice. In addition, we reconstituted KO cells with wild type, substrate-trapping (D/A) and sumoylation-resistant (K/R) PTP1B mutants, then characterized differentiation and signaling in these cells. KO, D/A- and WT-reconstituted cells fully differentiated into mature adipocytes with KO and D/A cells exhibiting a trend for enhanced differentiation. In contrast, K/R cells exhibited marked attenuation in differentiation and lipid accumulation compared with WT cells. Expression of adipogenic markers PPARγ, C/EBPα, C/EBPδ, and PGC1α mirrored the differentiation pattern. In addition, the differentiation deficit in K/R cells could be reversed completely by the PPARγ activator troglitazone. PTP1B deficiency enhanced insulin receptor (IR) and insulin receptor substrate 1 (IRS1) tyrosyl phosphorylation, while K/R cells exhibited attenuated insulin-induced IR and IRS1 phosphorylation and glucose uptake compared with WT cells. In addition, substrate-trapping studies revealed that IRS1 is a substrate for PTP1B in brown adipocytes. Moreover, KO, D/A and K/R cells exhibited elevated AMPK and ACC phosphorylation compared with WT cells. CONCLUSIONS These data indicate that PTP1B is a modulator of brown fat adipogenesis and suggest that adipocyte differentiation requires regulated expression of PTP1B.
منابع مشابه
Protein tyrosine phosphatase profiling analysis of HIB-1B cells during brown adipogenesis.
A number of evidence have been accumulated that the regulation of reversible tyrosine phosphorylation, which can be regulated by the combinatorial activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), plays crucial roles in various biological processes including differentiation. There are a total of 107 PTP genes in the human genome, collectively referred to as t...
متن کاملInhibition of protein tyrosine phosphatase 1B and regulation of insulin signalling markers by caffeoyl derivatives of chicory ( Cichorium intybus) salad leaves.
Evaluations of molecular mechanisms of dietary plants with their active molecules are essential for the complete exploration of their nutritive and therapeutic value. In the present study, we investigated the effect of chicory (Cichorium intybus) salad leaves in inhibiting protein tyrosine phosphatase 1B (PTP1B), and evaluated their role in modulating the key markers involved in insulin cell si...
متن کاملProtein tyrosine phosphatase profiling studies during brown adipogenic differentiation of mouse primary brown preadipocytes
There is a correlation between obesity and the amount of brown adipose tissue; however, the molecular mechanism of brown adipogenic differentiation has not been as extensively studied. In this study, we performed a protein tyrosine phosphatase (PTP) profiling analysis during the brown adipogenic differentiation of mouse primary brown preadipocytes. Several PTPs, including PTPRF, PTPRZ, and DUSP...
متن کاملDual-Specificity Phosphatase 10 Controls Brown Adipocyte Differentiation by Modulating the Phosphorylation of P38 Mitogen-Activated Protein Kinase
BACKGROUND Brown adipocytes play an important role in regulating the balance of energy, and as such, there is a strong correlation between obesity and the amount of brown adipose tissue. Although the molecular mechanism underlying white adipocyte differentiation has been well characterized, brown adipocyte differentiation has not been studied extensively. Here, we investigate the potential role...
متن کاملProtein tyrosine phosphatase 1B reduction regulates adiposity and expression of genes involved in lipogenesis.
Protein tyrosine phosphatase 1B (PTP1B) has been implicated as a negative regulator of insulin action. Overexpression of PTP1B protein has been observed in insulin-resistant states associated with obesity. Mice lacking a functional PTP1B gene exhibit increased insulin sensitivity and are resistant to weight gain. To investigate the role of PTP1B in adipose tissue from obese animals, hyperglycem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011